how to knock-down *in vivo* the expression of endogenous proteins?
Tools for negative regulation of protein level
Tools for negative regulation of protein level

- at genomic level:
 - DNA
 - ZFN
 - TALEN
 - CRISPR/Cas9

- use a nuclease as catalytic domain
- the cleavage of target gene induced DSB/DNA repair mechanism: ORF disruption
ZFN
Zinc Finger Nucleases

- structure and mechanism

A guide to genome engineering with programmable nucleases

Hyongbum Kim and Jin-Soo Kim

NATURE REVIEWS | GENETICS
VOLUME 15 | MAY 2014 | 321
TALE
Transcription Activator-Like Effectors

- **Origin**: secreted by *Xanthomonas*
 modulate gene expression in host plants and to facilitate bacterial colonization

- **Structure**

 ![Diagram of TALE structure]

 - Hyper-variability of the amino acids at the 12th and 13th positions of each repeat directed
 the recognized sequence by a simple one-to-one code between these two critical aa and each
 DNA base in the target sequence
 - Optimal size of DNA target sequence: 19-pb (about 17.5 repeat domains)

 ➢ **TALE have been utilized to create site-specific gene-editing tools**
 by fusing target sequence-specific TAL effectors
TALE mechanism (1)

- **TALE Nucleases**: Disruption of gene: Nucleases + DNA repair

Modularly assembled designer TALE nucleases for targeted gene knock-out or gene replacement like knock-in (reporter gene) or specific mutation by homologous recombinaison with donor plasmid

• TALE-type transcription factors: induce or repress gene expression by interaction of the functional domain with endogenous transcription complex

• Bind to target gene promoter sequence-specifically
• Recruit or block transcription complex via a trans-activator or trans-repressor domain as functional domain in TALE-TF
CRISPR/Cas9 system II
Clustered Regularly Interspaced Short Palindromic Repeats

• **Origin:**
 - mechanism of bacterial immune system against viruses infections
 - Cas 9 from *Streptococcus pyogenes/Neisseria meningitidis/Staphylococcus aureus*

• **mechanism:**
 to create deletion,
 insertion,
 or replacement by homologous recombinaison with donor plasmid
CRISPR/Cas9 structure and mechanism

- On-target sqc(20nt)
- scaffold domain
- Cas9 fixation domain

Protospacer Adjacent Motif

AGCTGGGGATCAACTATAGCG CGG
DNA repair mechanisms after the nuclease action

(a) Non-homologous end joining

- Gene disruption (via small insertions or deletions)
- Insertion (up to 14 kb by synchronized donor cleavage in vivo)
- NHEJ-mediated ligation of broken DNA ends
- Simultaneous cleavage by two nuclease(s)
- Deletion
- Inversion

(b) Homology-directed repair

- Gene addition
 - Provide donor template containing transgene(s)
- Gene correction
 - Provide donor template containing modified gene sequence
Comparison of genome engineering technologies

<table>
<thead>
<tr>
<th></th>
<th>ZFN</th>
<th>TALEN</th>
<th>CRISPR-Cas9</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>< 2x 1 kb</td>
<td>~ 2x 3 kb</td>
<td>~ 4.2 kb</td>
</tr>
<tr>
<td>Virus packaging</td>
<td>AAV</td>
<td>No</td>
<td>?</td>
</tr>
<tr>
<td>Nuclease</td>
<td>FokI</td>
<td>FokI</td>
<td>Cas9</td>
</tr>
<tr>
<td>length of target site</td>
<td>18–36 bp</td>
<td>30–40 bp</td>
<td>22 bp+PAM</td>
</tr>
<tr>
<td></td>
<td>2 target sequences</td>
<td>2 target sequences</td>
<td>Only 1 target sequences</td>
</tr>
<tr>
<td>Easy used</td>
<td>Very long need pre-screening</td>
<td>Depend Need step-wise synthesis</td>
<td>More simple</td>
</tr>
<tr>
<td>specificity</td>
<td>varying</td>
<td>Seems to be good</td>
<td>Could be limited</td>
</tr>
<tr>
<td>Off-target effects</td>
<td>High</td>
<td>Low</td>
<td>Variable</td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td>Variable to high</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Success rate</td>
<td>Low (~24%)</td>
<td>High (>99%)</td>
<td>High (~90%)</td>
</tr>
<tr>
<td>Multiplex power</td>
<td>limited</td>
<td>limited</td>
<td>multiplexable</td>
</tr>
</tbody>
</table>
Tools for negative regulation of protein level

- at genomic level:
 - DNA:
 - Zinc Finger Nuclease
 - TALEN
 - CRISPR/Cas9
 - mRNA:
 - shRNA
 - miRNA
Post Transcriptional Gene Silencing

- **shRNA**: short hairpin RNA is a siRNA-like transcripts with stem-loop structure

- **miRNA**: gene-specific sequence of shRNA into a miR-30 context
shRNA/miRNA maturation
sh/miRNA mechanism

- **RISC**
 - RNA Induced Silencing Complex

ssRNA

- **Cleavage**
 - Degradation

- **Translational inhibition**

- **Deadenylation**
 - Decapping
 - Degradation

perfect complementarity between ssRNA/mRNA

imperfect complementarity between ssRNA/mRNA 3’UTR

Höck & Meister (2008)
miRNA Avantage

Add many Sh On-target sequence to increase efficiency of interference
Tools for negative regulation of protein level

- **at genomic level:**
 - DNA
 - Zinc Finger Nuclease
 - TALEN
 - CRISPR/Cas9
 - mRNA
 - shRNA
 - miRNA

- **at protein level:**
 - specific neutralizing antibodies > membranar protein
 - peptide-directed degradation > cytosolic protein
Neutralizing Antibodies

Application for:

- soluble protein
- extracellular protein (receptor)
Neutralizing Antibodies (NA)

In Vivo AAV1 Transduction With hRheb(S16H) Protects Hippocampal Neurons by BDNF Production

Min-Tae Jeon¹,², Jin Han Nam³, Won-Ho Shin⁴, Eunju Leem¹,², Kyoung Hoon Jeong¹,², Un Ju Jung⁵, Young-Seuk Bae¹,², Young-Ho Jin⁶, Nikolai Kholodilov⁷, Robert E Burke⁸, Seok-Geun Lee⁹,¹¹, Byung Kwan Jin³,⁴ and Sang Ryong Kim¹,²,¹²,¹³

Molecular Therapy vol. 23 no. 3, 445–455 mar. 2015

- **Thrombin** - a serine protease of the trypsin family, a key enzyme of the blood coagulation system - can act as a **neurotoxin**, leading to the death of hippocampal neurons and AD-like cognitive impairment. Its expression is increased in the brains of patients with AD. It accumulates in senile plaques, reactive microglial cells, and neurofibrillary tangles in AD brains and microvessels.

- **BDNF expression** - a neurotrophin that mediates neuronal survival and Differentiation - is decreased in AD brains. BDNF delivery has **neuroprotective effects** in animal models of AD.

- **Rheb** - a member of the Ras family of small GTP-binding proteins - mediates the activation of mTORC1, which enhances the cell survival by producing BDNF. Rheb(S16H) is an active form.

- hRheb(S16H)-induced BDNF on the activation of mTORC1 may contribute to neuroprotection in the thrombin-treated hippocampus.
• rat model in CA1 region
• thrombin-induced neurotoxicity in vivo
• hRheb(S16H) protects hippocampal neurons from thrombin-induced neurotoxicity

• Stereotaxic injection of BDNF neutralizing antibodies (100, 200 or 400 ng, 4 μl at 0.5 μl/minute) and thrombin (20 U) at 3 weeks after AAV-hRheb(S16H) injection.
Chaperon-Mediated Autophagie (CMA) by lysosomal degradation pathway

- CMA is a type of autophagy specific for proteins containing a pentapeptide motif biochemically related to KFERQ
- Could be easily generalized to degrade any native cytosolic endogenous protein
 - Use of a chimeric peptide which directed endogenous protein degradation by lysosome
 - Induce a conditional knock-down
 - A simple, fast and easily reversible technique
CMA-peptide design

| Cell membrane penetrating domain (CMPD) | Protein binding domain (PBD) | CMA targeting motif (CTM) |

TAT 47-57: derived from HIV-1 arginine-rich cell-penetrating peptide

peptide-protein of interest interaction domain
Based on a well-known protein/protein interaction motif

directed protein degradation by peptide-lysosomal proteins interaction
from CMA substrate proteins like RNaseA (KFERQ), hsc70 (QKILD), or hemoglobin (QRFFE)
CMA-peptide mechanism

Systemic or local injection

In situ production?
• **DAPK1**, Death-associated protein kinase 1, a calcium-calmodulin–regulated protein kinase normally inactive in the brain. Activation and recruitment of DAPK1 to NMDARs under excitotoxic stimulation or cerebral ischemia. *DAPK1 activation induce apoptosis.*

PBD : DAPK1 interact with C-terminal residues 1292–1304 of GluN2B
GluN2B can bind **only the active** and not the inactive form of DAPK1

TAT 47-67_GluN2B 1292-1304_CTM

<table>
<thead>
<tr>
<th>Component</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPB</td>
<td>YGRKKRRQRRR</td>
</tr>
<tr>
<td>PBD</td>
<td>KKNRNKLRRQHYS</td>
</tr>
<tr>
<td>CTM</td>
<td>KFERQKILDQRFEE</td>
</tr>
</tbody>
</table>

CMA peptide : TAT-GluN2B-CTM

```
YGRKKRRQRRR
KKNRNKLRRQHYS
KFERQKILDQRFEE
```

Control peptide : TAT-GluN2B

```
YGRKKRRQRRR
KKNRNKLRRQHYS
```

No cell-permeable peptide : GluN2B-CTM

```
KKNRNKLRRQHYS
KFERQKILDQRFEE
```
In vitro CMA-peptide efficiency on cultured cortical neurons (1)

- **Bath application**:
 - TAT-GluN2B or TAT-GluN2BCTM (200 μM)
 - mixed GluN2B-CTM with the intracellular delivering carrier peptide Pep-1 at a 1:4 ratio (50/200 μM) for 30 min to form a plasma membrane-permeant peptide complex.
 - bath-applied: 60 min before and during NMDA treatments (50 μM; 30 min)

- ➢ in a dose-dependent manner
- ➢ in a time-dependent manner

➢ TAT- or Pep-1-mediated synthetic peptides to **rapidly** and **reversibly** degrade its endogenous binding partner DAPK1 following NMDA treatment
• **α-synuclein**, a protein implicated in neuro-degenerative synucleinopathies such as Parkinson’s disease.
 PBD : α-syn have a strongly interact with β-synuclein (βsyn 36-45)

• **PSD-95**, a membrane-associated guanylate kinase concentrated at glutamatergic synapses and involved in synapse stabilization.
 PBD : PSD-95 interact with 9 aa Cterminal of GluN2B

In vitro CMA-peptide efficiency on cultured cortical neurons (2)
In vivo CMA-peptide efficiency : protocol

- Rat model of focal ischemia: middle carotid artery occlusion (MCAo)

- Timecourse

- Injections: saline, TAT-GluN2B-CTM or TAT-GluN2B

![Diagram showing the protocol](image_url)
In vivo CMA-peptide efficiency: results

1- Control of ischemia insult:
2,3,5-Triphenyltetrazolium chloride staining of transverse brain sections

- saline-treated rats revealed that unilateral MCAo reliably induced insult mostly in the ipsilateral

2 - DAPK1 expression

- The knock-down of DAPK1 produce neuroprotection against ischemic insult in vivo

3- Neuroprotection:
Fluorojade staining
Comparison of tools

<table>
<thead>
<tr>
<th></th>
<th>DNA</th>
<th>RNA</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFN</td>
<td>< 2x1 kb</td>
<td>~ 4.2 kb</td>
<td>< 300 pb</td>
</tr>
<tr>
<td>TALEN</td>
<td>~ 2x3 kb</td>
<td>< 100 pb</td>
<td>AAV / LV</td>
</tr>
<tr>
<td>CRISPR-Cas9</td>
<td>~ 4.2 kb</td>
<td>350 pb</td>
<td>AAV / LV</td>
</tr>
<tr>
<td>shRNA</td>
<td>< 100 pb</td>
<td>350 pb</td>
<td>AAV / LV</td>
</tr>
<tr>
<td>miRNA</td>
<td>~ 10 pb</td>
<td>21 pb</td>
<td>AAV / LV</td>
</tr>
<tr>
<td>CMA peptide</td>
<td>< 300 pb</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VirusPackaging</td>
<td>AAV</td>
<td>AAV / LV</td>
<td>AAV / LV</td>
</tr>
<tr>
<td>target site</td>
<td>18–36 pb</td>
<td>22 pb</td>
<td>Variable</td>
</tr>
<tr>
<td>Easy used</td>
<td>Very long</td>
<td>More simple</td>
<td>easy</td>
</tr>
<tr>
<td>Specificity</td>
<td>varying</td>
<td>Seems to be good</td>
<td>Could be limited</td>
</tr>
<tr>
<td>Off-target effects</td>
<td>High</td>
<td>Low</td>
<td>Variable</td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td>Variable/high</td>
<td>Low</td>
<td>Variable</td>
</tr>
<tr>
<td>Success rate</td>
<td>Low (~24%)</td>
<td>High (~99%)</td>
<td>Depend (~50%)</td>
</tr>
<tr>
<td>Multiplex power</td>
<td>limited</td>
<td>limited</td>
<td>Multiplexable</td>
</tr>
</tbody>
</table>

- **ZFN**: Zygote-activated nuclear cassette
- **TALEN**: Transcription activator-like effector nucleases
- **CRISPR-Cas9**: Clustered regularly interspaced short palindromic repeats with CRISPR associated protein 9
- **shRNA**: Short hairpin RNA
- **miRNA**: MicroRNA
- **CMA**: Cas9-mediated adeno-associated virus
- **pb**: Pico base
- **AAV**: Adeno-associated virus
- **LV**: Lentiviral vector
miRNA maturation

![Diagram of miRNA maturation](image)

Natural microRNA in nervous system

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-302; miR-124</td>
<td>différentiation neuronale</td>
<td>(Hohjoh and Fukushima, 2007)</td>
</tr>
<tr>
<td>miR-1</td>
<td>facteur de croissance; développement neuronal</td>
<td>(Lewis et al., 2003)</td>
</tr>
<tr>
<td>miR-29</td>
<td>régulation de l’apoptose</td>
<td>(Mott et al., 2007)</td>
</tr>
</tbody>
</table>