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SUMMARY

PSD-95 is a prominent organizer of the postsynaptic
density (PSD) that can present a filamentous orienta-
tion perpendicular to the plasmamembrane. Interac-
tions between PSD-95 and transmembrane proteins
might be particularly sensitive to this orientation,
as ‘‘long’’ cytoplasmic tails might be required to
reach deeper PSD-95 domains. Extension/retraction
of transmembrane protein C-tails offer a new way of
regulating binding to PSD-95. Using stargazin as a
model, we found that enhancing the apparent length
of stargazin C-tail through phosphorylation or by an
artificial linker was sufficient to potentiate binding
to PSD-95, AMPAR anchoring, and synaptic trans-
mission. A linear extension of stargazin C-tail facili-
tates binding to PSD-95 by preferentially engaging
interaction with the farthest located PDZ domains
regarding to the plasma membrane, which present
a greater affinity for the stargazin PDZ-domain-bind-
ing motif. Our study reveals that the concerted orien-
tation of the stargazin C-tail and PSD-95 is a major
determinant of synaptic strength.

INTRODUCTION

PSD-95 is a major organizer and the most abundant scaffolding

protein of excitatory postsynaptic densities (PSDs) (Cheng et al.,

2006) in which it plays a prominent role for synaptic plasticity

(Kim and Sheng, 2004). PSD-95 is a member of the mem-

brane-associated guanylate kinase (MAGUK) family, which

shares three conserved class 1 PDZ domains and one SH3-GK

(Src homology 3-guanylate kinase) module (Sheng and Sala,

2001; Songyang et al., 1997). PSD-95 binds and recruits many

key transmembrane proteins to the PSD, such as NMDA recep-

tors (NMDARs); AMPA receptors (AMPARs) via binding to star-

gazin and other transmembrane AMPAR regulating proteins
(TARPs); adhesion molecules such as Neuroligin1; several po-

tassium channels (Kv1 and Kir 1-4); and critical neuromodulator

receptors such as the b1-adrenergic receptors, the neuronal

nicotinic acetylcholine receptors (nAChRc), and serotonin recep-

tors (5-HT2A/2C Rc) (Feng and Zhang, 2009; Kim and Sheng,

2004).

Schemes have often depicted PSD-95molecules as parallel to

the postsynaptic membrane at the PSD (Kim and Sheng, 2004).

Electron microscopy (EM) images of individual recombinant

PSD-95 molecules (Fomina et al., 2011; Nakagawa et al., 2004)

indeed show a C-shaped circular conformation consistent with

results from modeling (Korkin et al., 2006). However, results

from immuno-labeling EM and tomography in intact hippocam-

pal neurons have indicated that PSD-95 is in an extended config-

uration and positioned into regular arrays of vertical filaments

that contact both glutamate receptors and orthogonal horizontal

elements layered deep inside the PSD in rat hippocampal spine

synapses (Chen et al., 2008, 2011; Feng and Zhang, 2009).

This is fully consistent with the fact that PSD-95 is anchored in

the membrane through two palmitoylation sites located at its

extreme N terminus (Craven et al., 1999; El-Husseini et al.,

2000). How this perpendicular conformation might affect binding

to its different partners and how this, in turn, might impact syn-

aptic function remain unknown.

An immediate implication of an orientation of PSD-95 perpen-

dicular to the plasma membrane is that the C-tail of transmem-

brane partners might need to reach out into the cytoplasm in

order to bind their target domains in PSD-95. The C-tail might

need to extend at least 11 nanometers—i.e., the equivalent of

30 extended amino acids—from the plasma membrane, as

this distance marks the location of the first PDZ domain on

PSD-95 with respect to the palmitoylation site at its extreme

N terminus, as seen by EM (Chen et al., 2011). Besides these

constrains, a PSD-95 perpendicular to the membrane might

offer novel ways of regulating binding between PSD-95 and

transmembrane proteins by modulation of the effective length

of the respective intracellular domains. We explored this hy-

pothesis using a well-characterized model: the interaction

between PSD-95 and the transmembrane AMPAR auxiliary pro-

tein stargazin.
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Stargazin, also called g-2, is the first identified member of a

family of TARPs found to interact directly with AMPARs and

regulate their function and trafficking properties (Chen et al.,

2000; Elias and Nicoll, 2007). Stargazin has a PDZ-domain-

binding motif at its carboxy-terminus (C terminus) that associ-

ates directly with PSD-95-like MAGUKs, allowing it to regulate

AMPAR synaptic stabilization (Bats et al., 2007; Opazo et al.,

2010; Schnell et al., 2002; Tomita et al., 2005a, 2005b). Because

of the critical role of the stargazin-PSD-95 interaction on AMPAR

anchoring at synapses, changes in synaptic strength can be

used as a functional readout (Bats et al., 2007; Chen et al.,

2000; Schnell et al., 2002). Functional studies in neurons initially

indicated that the AMPAR-stargazin complex preferentially

binds to either or both of the PSD-95 first two PDZ domains

(Schnell et al., 2002; Xu et al., 2008). These first two PDZ

domains stand out as a functional supramodular ensemble in

which the relative orientation of the two ligand-binding grooves

favors accommodating multiple ligands originating from the

same direction, as seen by nuclear magnetic resonance (NMR)

(Long et al., 2003; Wang et al., 2009), X-ray crystallography

(Sainlos et al., 2011), and Förster resonance energy transfer

(FRET) with the full-length protein (McCann et al., 2011). It is

interesting to note that, in an extended PSD-95 conformation,

PDZ1 and 2 are the closest to the membrane and, therefore,

might preferentially contribute to binding due to their proximity

to the PDZ-binding motif of stargazin. Finally, the anchoring

of TARP-containing AMPARs at the synapse likely involves

multivalent PDZ-domain-mediated interactions (Fomina et al.,

2011; Pegan et al., 2007). This idea is consistent with the devel-

opment of synthetic divalent ligands that were designed to repli-

cate the multiplicity of stargazin C termini per AMPAR complex.

These biomimetic divalent ligands could specifically and acutely

disrupt the endogenous AMPAR-MAGUK interaction in cultured

neurons in conditions where a single competing binding motif

had no effect (Sainlos et al., 2011).

About 100 amino acids upstream of the C-terminal PDZ-bind-

ingmotif, the stargazin C-tail harbors a stretch of seven arginines

interleaved by nine serines (RS domain) (Figure S1A), so that the

overall charge of this domain is highly positive. Previous studies

have shown that the RS domain is attached to the plasma

membrane via electrostatic interactions with negatively charged

phospholipids (Roberts et al., 2011; Sumioka et al., 2010). This

membrane interaction may reduce what we called the ‘‘effec-

tive’’ length of the C-tail and thus further constrain binding by

limiting the ability of stargazin PDZ-binding motif to sample effi-

ciently the spine cytoplasm. Notably, it has been shown that the

serine residues present in the RS domain can be phosphorylated

in an activity-dependent manner by CaMKII and PKC (Tomita

et al., 2005b) so that the RS domain changes from highly positive

to negative upon phosphorylation. More important, phosphory-

lation seems to disrupt the electrostatic interaction between

the membrane and the stargazin C-tail (Sumioka et al., 2010).

Additionally, biochemical and functional studies have demon-

strated that phosphorylation of the RS domain facilitates the

interaction between stargazin and PSD-95 (Opazo et al., 2010;

Sumioka et al., 2010; Tomita et al., 2005b). Taken together, these

findings raise the intriguing possibility that phosphorylation

might regulate binding to PSD-95 simply by increasing the effec-
2 Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc.
tive length of the stargazin C-tail, thus facilitating access to PDZ

domains deeper in the spine cytoplasm.

In this study, we took advantage of super-resolution imaging

techniques, biophysical measurements, biochemistry, and elec-

trophysiology to show that the effective length of the stargazin

C-tail, rather than the one defined by the primary sequence,

is the major factor controlling not only binding to PSD-95 but

also the recruitment of AMPARs and, thus, the strength of

synaptic transmission.

RESULTS

In the first set of experiments, we developed a tool with nano-

scale precision to specifically monitor changes in the relative dis-

tance between the stargazin PDZ-domain-binding motif and the

plasma membrane. We designed a specific FRET pair between

the plasma membrane marker R18 (octadecyl rhodamine B

chloride) and stargazin::GFP (Figure 1A). We expressed starga-

zin::GFP267 (where GFP was positioned immediately after the

putative membrane-bound RS region of the stargazin C-tail; Fig-

ure S1A) in cultured hippocampal neurons and stained neurons

with R18 prior to imaging (Figure 1B).We then used fluorescence

lifetime imaging microscopy (FLIM) to estimate the degree

of FRET by measuring the decrease in GFP lifetime (Yasuda,

2006). We found a robust FRET signal between starga-

zin::GFP267 and R18 (Figure 1C). Notably, there was no FRET be-

tween soluble GFP and R18, arguing for a specific FRET signal

in the vicinity of the plasma membrane. In order to examine

whether the rest of the C-tail extended into the cytoplasm, we

positioned GFP further down the C-tail (stargazin::GFP302) and

measured its interaction with R18. As expected for a tail oriented

perpendicular to the membrane, this construct displayed a

weaker FRET signal, indicating that this region is statistically

further away from the plasma membrane. We then positioned

GFP even further down the C-tail (stargazin::GFP322) and found

an even weaker FRET with R18, consistent with the idea that

the C-tail is extending away from the plasma membrane, into

the cytoplasm (Figure 1C). Thus, as opposed to the membrane

attachment of the proximal region of the stargazin C-tail, the

distal half carrying the PDZ-binding motif displays an extended

conformation as might be needed if they are to reach the PDZ

domains of an extended PSD-95.

Recent biochemical and functional studies have demon-

strated that the interaction between stargazin and PSD-95 can

be regulated by phosphorylation of the serine stretch in the star-

gazin C-tail (Opazo et al., 2010; Sumioka et al., 2010; Tomita

et al., 2005b). Notably, phosphorylation seems to disrupt the

electrostatic interaction between the membrane and the starga-

zin C-tail. This finding raises the intriguing possibility that phos-

phorylation might further extend the distal half of the stargazin

C-tail into the cytoplasm, thus increasing its effective length in

order to facilitate access to PDZ domains deeper in the cyto-

plasm of spines. In order to examine this hypothesis, we intro-

duced phospho-mutations to the stargazin::GFP267 construct

used earlier (Figure 1D). Wemimicked stargazin phosphorylation

by mutating the nine phosphorylated serine residues to aspar-

tates (stargazin::GFP267 S9D) and measured the interaction of

this construct with the plasma membrane. We found that these



A

C

E

D

B

Figure 1. The Stargazin C-tail Effectively Extends into the Cytoplasm in a Charge-Dependent Manner

The interaction between the Stg C terminus and the plasma membrane was studied using a two-photon-based FRET-FLIM technique.

(A) Scheme (left) showing that GFP inserted into the Stg C terminus at various positions is in close proximity to the membrane labeled with R18 and can be

detected by FRET.

(B) Images of a neuron expressing Stg::GFP (left) and incubated for 5 min at 37�C with R18 (middle). Scale bar, 50 mm. Zoom onto a dendrite portion (right).

Stg::GFP is expressed in the dendritic shaft and enriched in spine heads (top panel at right). R18 labels the plasma membrane uniformly (middle panel at right).

Overlay of the Stg::GFP and R18 images showing that neurons transfected with Stg::GFP are efficiently labeled with R18 (bottom panel at right). Scale bar for top

panel at right, 1 mm.

(C) GFP lifetime is decreased in the presence of R18 (10 mM)when theGFP is coupled to Stg (CTL = 2.441 ns, n = 20; Stg::GFP267 = 2.076 ns, n = 34; Stg::GFP302 =

2.167 ns, n = 16; Stg::GFP322 = 2.288, ns, n = 22) but not when GFP is freely diffusing in the cytoplasm (GFP = 2.459 ns, n = 16). p < 0.0001, Welch’s ANOVA. CTL,

control.

(D) Scheme (left) showing the expected elongation of Stg C terminus when the RS domain is negatively charged. Mutations affecting the charge of the RS domain

modify the efficacy of the energy transfer from theGFP to R18 (10 mM) (right) (CTL = 2.455 ns, n = 18;WT= 2.072 ns, n = 44; S9D = 2.159 ns, n = 40; R7A = 2.272 ns,

n = 20; S9D/R7A = 2.258 ns, n = 22). p < 0.0001, Welch’s ANOVA.

(E) Scheme (left) showing the expected re-localization of Stg PDZ-binding motif after CaMKII phosphorylation. Following cLTP induction, the efficiency of energy

transfer from GFP to R18 (20 mM) is reduced (right) (basal �R18 = 2.440 ns, n = 14; cLTP �R18 = 2.438 ns, n = 11; Basal +R18 = 1.972 ns, n = 26; cLTP +R18 =

2.107 ns, n = 43). This effect is blocked by CaMKII inhibitor KN93 (cLTP +KN93 +R18 = 2.024 ns, n = 28) and Stg S9A mutation (WT �cLTP = 2.050 ns, n = 19;

S9A �cLTP = 1.947 ns, n = 18; S9A +cLTP = 1.938 ns, n = 22). p < 0.0001, Welch’s ANOVA.

Data represented as mean ± SEM. **p < 0.01; ***p < 0.0005; ns, not significant (p = 0.11).
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phospho-mimetic mutations extend the stargazin C-tail into the

cytoplasm of spines as reflected by a decrease in FRET with

R18 in the membrane (Figure 1D). We also confirmed that phos-

pho-mutations also extended the C-tail of stargazin carrying the
GFP further down the C-tail and thus better reflecting the

behavior of the PDZ-domain-binding motif (stargazin::GFP302

S9D/R7A) (Figure S1B). To control that the increase in GFP life-

time was due to the distancing of the stargazin C-tail from the
Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc. 3
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plasma membrane and not due to a nonspecific effect on the

intrinsic properties of GFP (i.e., alterations in the dipole orienta-

tion), we designed a second FRET pair between stargazin::

mCherry302 and the plasma membrane marker F18 (fluorescein

octadecyl ester) as a FRET donor. Similarly, we found that the

introduction of phospho-mimetic mutations distanced the cyto-

plasm tail of stargazin::mCherry away from the plasma mem-

brane, as evidenced by the increase in F18 lifetime (Figures

S1C and S1D).

Together, these findings strongly suggest that phosphoryla-

tion further extends the distal half of the stargazin C-tail carrying

the PDZ-domain-binding motif in order to facilitate access and

binding to PDZ domains that would be located further away

from the membrane, such as in a PSD-95 oriented perpendicu-

larly to the plasma membrane.

Since the proximal half of the stargazin C-tail is presumably

bound to the membrane via a stretch of positively charged argi-

nine residues, we examined whether mutating these residues

was sufficient to extend the distal half into the cytoplasm. We

found that substituting the seven arginine residues to uncharged

alanines (stargazin::GFP267 R7A) was sufficient to extend the

distal half of the C-tail into the cytoplasm (Figure 1D). In addition,

the combined mutant stargazin::GFP267 S9D/R7A did not exhibit

additive effects, suggesting that phosphorylation extends the

stargazin C-tail into the cytoplasm solely by neutralizing the

positively charged arginine residues.

Next, we examined whether the stargazin C-tail can be

extended after induction of CaMKII activity. Using the FRET

pair between stargazin::GFP322 wild-type (WT) and R18 in

cultured hippocampal neurons, we activated NMDARs via a

chemically induced long-term potentiation (cLTP) protocol

known to promote the CaMKII-dependent immobilization of

AMPAR (Opazo et al., 2010). We found that the cLTP protocol

was sufficient to extend the stargazin C-tail away from the

plasma membrane (Figure 1E). It is important to note that the

cLTP-induced extension of the stargazin C-tail was mediated

by direct phosphorylation of stargazin by CaMKII, as it was

significantly reversed by the CaMKII inhibitor KN93 and was

not observed when the stretch of nine serines in stargazin

was substituted by non-phosphorylatable alanines (S9A).

Although phosphorylation increases the extension of the

stargazin C-tail away from the membrane, it remains unclear

whether this phenomenon alone can account for the facilitated

binding to PSD-95 that was previously observed in Sumioka

et al. (2010). It is also possible that phosphorylation might

create binding sites to additional proteins that might ultimately

stabilize the stargazin-PSD-95 complex. In order to discrimi-

nate between these possibilities, we first wanted to confirm

that stargazin phosphorylation does, in fact, facilitate binding

to PSD-95 as it has been previously reported (Sumioka et al.,

2010). To that end, we co-expressed untagged PSD-95 with

stargazin WT, stargazin S9D, or stargazin S9A in COS-7 cells

and examined their relative interaction using pull-down assays.

As previously observed, we found that PSD-95 preferentially

pulled down the phospho-mimetic stargazin S9D. In addition,

PSD-95 displayed a stronger interaction with stargazin WT

than with the stargazin S9A (Figure 2A). As a control for our

FRET experiments, we verified that PSD-95::GFP displayed
4 Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc.
the same behavior in pull-down assays as untagged PSD-95

(Figure S2A).

To examinewhether stargazin phosphorylation bi-directionally

regulates binding to PSD-95 in living cells, we co-transfected

stargazin::mCherry and PSD-95::GFP in COS-7 cells (Figure 2B),

introduced phospho-mutations to the stargazin::mCherry C-tail

(stargazin::mCherry S9A and S9D) (Tomita et al., 2005b), and

measured the degree of FRET through GFP lifetime (Sainlos

et al., 2011). Stargazin::mCherry S9D facilitated the interaction

with PSD-95::GFP as reflected by the decrease in GFP lifetime

(Figure 2B). Intriguingly, we found no difference between starga-

zin::mCherry WT and stargazin::mCherry S9A on binding PSD-

95::GFP using our FRET assay (Figure 2B). It is possible that

stargazin::mCherry WT might not be normally phosphorylated

in COS-7 cells (and, therefore, behave similarly to stargazin

S9A), either because of a lack of CaMKII activity or because

the bulky size of the acceptor fluorophore mCherry might pre-

vent CaMKII access. We believe the latter scenario is the most

likely for two reasons. First, the pull-down assays described

earlier using stargazin not tagged with fluorescent proteins

showed a differential binding between stargazin WT and S9A,

suggesting endogenous phosphorylation of stargazin WT RS

domain in COS-7 cells. Second, we found that active CaMKII

failed to facilitate binding between stargazin::mCherry WT and

PSD-95::GFP using FRET (data not shown). However, CaMKII

did facilitate the stargazin-PSD-95 interaction when stargazin

WT was labeled with the small acceptor fluorophore ReAsH

(molecular weight [MW], 0.58 kDa), using the TetraCysteine

system instead of a bulkier fluorescent protein (Figure 2C). This

CaMKII-induced increase in stargazin-PSD-95 interaction was

absent when the nine serines on the stargazin C-tail, which are

the CaMKII substrates, were mutated to alanines (S9A).

Finally, we tested whether the stargazin phosphorylation state

might also regulate binding to PSD-95 in neurons. To that end,

we measured the extent of FRET between PSD-95::GFP and

either stargazin WT or S9D in cultured hippocampal neuron. As

shown in Figures 2D–2F, we found that PSD-95::GFP presents

a stronger interaction with stargazin::mCherry S9D at both

spines and dendritic shaft, as evidenced by the robust decrease

in GFP lifetime. Notably, stargazin WT only interacted with

PSD-95 in spines but not in dendritic shafts. The S9D and R7A

mutations induced the interaction of stargazin with PSD-95 in

dendritic shafts and potentiated that in spines (Figure 2F).

As observed previously in COS-7 (Figure 2B), stargazin WT

and S9A displayed a similar interaction with PSD-95. Again,

this indicates that stargazin::mCherry WT is most likely not

phosphorylated.

As a control, we verified that PSD-95::GFP co-localized with

both stargazin::mCherry WT and S9D (Figure S2B) and that

expression of the latter did not modify PSD-95 distribution be-

tween synaptic and extra-synaptic compartments (Figure S2C).

In addition, taking advantage of the capacity of our FRET-FLIM

instrument to perform spatial maps, we found no significant

proximal-to-distal dendrite spatial gradient in FRET signal

between PSD-95::GFP and stargazin::mCherry WT or S9D

(Figure S2D).

Having confirmed that stargazin phosphorylation facilitates

binding to PSD-95 in living COS-7 cells and cultured neurons,
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Figure 2. The Stargazin C-tail Charge Regu-

lates Binding to PSD-95 in Neurons

(A) COS-7 cells expressing PSD-95 WT and HA-

Stg. PSD-95 preferentially co-immunoprecipitates

with Stg mutants with extended C-terminal

domains (CTDs) (S9D and 24G). Before immuno-

precipitation (IP), cells were incubated with di-

thiobis(succinimidylpropionate) (DSP). Represen-

tative western blots for total protein (top: Stg,

second row: PSD-95), immunoprecipitation (IP), or

co-immunoprecipitation (CoIP) of PSD-95 for the

different Stg mutants. The same gel of starting

material is blotted for PSD-95 and stargazin. The

arrows show the upper band of PSD-95 that was

used for quantifications (left). Quantified blot data

for each condition (right) (S9A = 61%; S9D = 176%;

24G = 222%; DPDZ = 18%) measuring the ratio of

PSD-95 co-immunoprecipitated over the immu-

noprecipitated stargazin. Data are normalized

to the control condition Stg WT. Columns are

compared using ANOVA and Tukey post-test. The

bar graph shows the mean and 95% confidence

intervals.

(B) Scheme representing the FRET pair PSD-95

coupled to the donor GFP inserted between

PDZ domains 2 and 3 (PSD-95::GFP253) and Stg

coupled to the acceptor mCherry (left). In COS-7

expressing this FRET pair, Stg phospho-mimetic

mutation increases binding to PSD-95::GFP (right)

(CTL = 2.375 ns, n = 21; Stg WT = 2.007 ns, n = 35;

Stg S9A = 1.996 ns, n = 40; Stg S9D = 1.894 ns,

n = 157; Stg R7A = 1.850 ns, n = 70; Stg DPDZ =

2.407 ns, n = 16). ANOVA and Bonferroni post-test.

CTL, control.

(C) Scheme representing the FRET pair PSD-

95::GFP253 and Stg coupled to a TetraCysteine tag

(Stg::4C) binding specifically to the membrane-

permeable acceptor fluorophore ReAsH (left).

Constitutively active truncated CaMKII (tCaMKII)

increases binding between PSD-95 and Stg in

COS-7 cells (right) (Stg WT = 2.098 ns, n = 51; Stg

WT +tCaMKII = 1.951 ns, n = 55). The tCaMKII

effect is blocked by Stg S9A mutation (Stg S9A =

2.205 ns, n = 48; Stg S9A +tCaMKII = 2.242 ns,

n = 45). Data were compared using Student’s t

test.

(D) Images of cultured hippocampal neurons

(12 days in vitro; DIV) expressing PSD-95::GFP400

(left) and Stg::mCherry (right). Scale bar, 20 mm.

(E) Zooms on a dendrite portion with spines

representing the PSD-95::GFP400 channel (left)

and the color-coded GFP lifetime intensity (right).

Scale bar, 1 mm.

(F) Stg phosphomimetic mutant S9D and R7A mutant increase binding to PSD-95 in spines (left) (CTL = 2.402 ns, n = 128 spines, 13 cells; WT = 2.203 ns, n = 96

spines, 10 cells; S9A = 2.185 ns, n = 175 spines, 15 cells; S9D = 2.080 ns, n = 240 spines, 24 cells; Stg R7A = 2.080 ns, n = 160 spines, 16 cells) and induce binding

to PSD-95 in dendritic shaft (right) (CTL = 2.483 ns, n = 65 dendritic shaft areas, 13 cells; WT = 2.491 ns, n = 119 dendritic shaft areas, 10 cells; S9A = 2.519 ns, n =

84 dendritic shaft areas, 15 cells; S9D = 2.384 ns, n = 205 dendritic shaft areas, 24 cells; R7A = 2.353 ns, n = 60 dendritic shaft areas, 10 cells). p < 0.0001,Welch’s

ANOVA.

Data are represented as mean ± SEM. **p < 0.01; ***p < 0.0005; ns, not significant. Post-test results are from pairwise Welch’s two-tailed t tests with Shaffer’s

step-wise Bonferroni procedure.
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we investigated whether this facilitation results directly from the

extension of the stargazin C-tail toward the cytoplasm. As a first

approximation to this question, we reasoned that, if the charge of

the stargazin C-tail is the critical factor controlling binding to

PSD-95, then mutating the arginine residues to modify this
charge should be sufficient to facilitate binding to PSD-95.

Indeed, mutating the seven arginines to alanines

(stargazin::mCherry302 R7A) was sufficient to facilitate binding

to PSD-95 (Figure 2F). Since stargazin R7A is also sufficient to

extend the stargazin C-tail into the cytoplasm (Figure 1D), it is
Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc. 5
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D

E F

B Figure 3. The Effective Extension of the

Stargazin C-tail Is Necessary and Sufficient

to Facilitate Binding to PSD-95 in Neurons

(A) Images of hippocampal culture neurons

(12 DIV) expressing PSD-95::GFP400 (left) and Stg::

mCherry (right). Scale bar, 20 mm.

(B) Zooms on portion of dendrites with spines

representing the GFP channel (left) and color-

coded GFP lifetime intensity (right). Scale bar,

1 mm.

(C) Neurons expressing the FRET pair PSD-

95::GFP253 and Stg::mCherry. Schemes of the

constructs used showing that we generated a Stg

S9D mutant with a shorter CTD by truncating

20 amino acids between the RS domain and the

mCherry (left). The truncation is sufficient to block

the S9D effect in spines (middle) (WT = 2.282 ns,

n = 83 spines, 9 cells; S9D = 2.173 ns, n = 279

spines, 28 cells; S9DD281–301 = 2.299 ns, n =

251 spines, 26 cells) and dendrites (right) (WT =

2.518 ns, n = 30 regions, 9 cells; S9D = 2.418 ns,

n = 96 regions, 28 cells; S9DD281–301 = 2.550 ns,

n = 90 regions, 26 cells). p < 0.0001, Welch’s

ANOVA.

(D) Hippocampal cultured neurons expressing

the FRET pair PSD-95::GFP400 and Stg::mCherry.

Schemes of the constructs used showing that we

generated a Stg WT with an extended CTD by in-

serting a glycine linker of 24 amino acids after the

RS domain (left). Stretching out the Stg CTD is

sufficient to mimic the S9D effect in spines (mid-

dle) (WT = 2.203 ns, n = 96 spines, 10 cells; 24G =

2.049 ns, n = 176 spines, 18 cells; 24GDPDZ =

2.418 ns, n = 74 spines, 6 cells) and dendrites

(right) (WT = 2.503 ns, n = 36 regions, 10 cells;

24G = 2.401 ns, n = 66 regions, 18 cells;

24GDPDZ = 2.580 ns, n = 36 regions, 6 cells). p <

0.0001, Welch’s ANOVA.

(E) Scheme representing the FRET pair PSD-

95::GFP253 C3,5S mutated for its two N-terminal

palmitoylation sites and Stg::mCherry (left).

In COS-7 expressing this FRET pair, Stg with

elongated CTD do not show increase binding

to PSD-95 (right) (CTL = 2.535 ns, n = 37; WT =

2.138 ns, n = 41; S9A = 2.110 ns, n = 40;

S9D = 2.139 ns, n = 40; 24G = 2.210 ns, n = 39;

DPDZ = 2.498 ns, n = 14). p < 0.0001, Welch’s

ANOVA, comparing all conditions of PSD-95::GFP

C3,5S- and Stg::mCherry-expressing cells. CTL,

control.

(F) COS-7 cells expressing the FRET pair

SAP97::GFP and Stg::mCherry. This binding is not

regulated by the Stg RS domain charge (CTL = 2,518, n = 60; STG WT = 2.163 ns, n = 88; STG S9D/R7A = 2.199 ns, n = 90).

Data are represented as mean ± SEM. **p < 0.01; ***p < 0.0005; ns, not significant. Post-test results are from pairwise Welch’s two-tailed t tests with Shaffer’s

step-wise Bonferroni procedure.
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likely that the effective length of the stargazin C-tail is the major

determinant in the facilitated interaction with PSD-95.

We then performed two additional experiments to directly

confirm that the effective length of the stargazin C-tail is the crit-

ical factor controlling binding to PSD-95 (Figures 3A–3D). First,

we argued that, if stargazin S9D has a stronger interaction with

PSD-95 because of a longer effective C-tail, then shortening

the C-tail of stargazin S9D by a truncationmight effectively block

the facilitated binding to PSD-95. As shown in Figure 3C, a small
6 Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc.
truncation in the distal half of stargazin C-tail S9D (Stargazin::

mCherry S9D D281–301, the PDZ-binding motif still present)

was sufficient to block the facilitation of binding to PSD-95. Sec-

ond, in order to examine whether an extension of the stargazin

C-tail alone would be sufficient to facilitate binding to PSD-95,

we introduced a linker of 24 glycine residues immediately

after the membrane-bound proximal half of WT stargazin (star-

gazin::mCherry 24G). Strikingly, we found that the presence of

the linker was sufficient to facilitate binding to PSD-95 in a
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PDZ-domain-dependent manner using FRET (Figures 3A and

3D) and pull-down assays (Figure 2A). It is important to note

that we used the FRET pair between stargazin::mCherry and

the plasma membrane marker F18 to ensure that the insertion

of the 24G linker effectively extended the stargazin C-tail into

the cytoplasm (Figure S3). Taken together, these findings indi-

cate that increasing the effective length—and, hence, extension

into the cytoplasm—of the stargazin C-tail is both necessary and

sufficient to facilitate access and binding to the PDZ domains of

PSD-95.

Based on our working model, we reasoned that stargazin car-

rying elongated C-tails such as S9D or 24G should have an

enhanced binding to PSD-95 only in the context of a PSD-95 ori-

ented perpendicularly to the plasma membrane because they

can reach deeper PDZ domains. Given that the N-terminal palmi-

toylation of PSD-95 is essential to adopt such orientation, we

examined whether preventing palmitoylation might disrupt the

perpendicular orientation of PSD-95 and, as a consequence,

whether stargazin S9D and 24Gwould lose their enhanced bind-

ing abilities. To test this hypothesis, we measured by FRET in

COS-7 cells the interaction between non-palmitoylatable PSD-

95 C3,5S—in which the two palmitoylation substrate cysteine

residues on the PSD-95 N terminus are mutated to serines—

and all the different stargazin mutants. PSD-95 C3,5S equally in-

teracted with all stargazin mutants, including WT, S9A, S9D, and

24G (Figure 3E). In a related experiment, we designed a FRET

pair between stargazin::mCherry and SAP97::GFP, a non-palmi-

toylatable member of the MAGUK family of scaffold proteins.

Stargazin S9D did not facilitate binding to SAP97 (Figure 3F).

Together, these results are in line with the notion that stargazin

phosphorylation facilitates binding to PSD-95 simply by

increasing the ‘‘apparent’’ length of stargazin C-tail. At the

same time, they suggest that the orientation of both the stargazin

C-tail and PSD-95 function in concert to facilitate binding.

As might be expected from a PSD-95 containing three PDZ

domains and oriented perpendicularly to the membrane, our

model predicts that stargazin with elongated C-tails could

bind to PDZ domains further away from the membrane. In other

words, stargazinWTmight preferentially bind PDZ1 (closer to the

membrane), whereas stargazin S9D might preferentially bind

PDZ3 (Figure 4A). If this is true, then PSD-95 carrying mutations

in PDZ1 should preferentially disrupt the interaction with starga-

zin WT, whereas PSD-95 carrying mutations in PDZ3 should

preferentially impact binding to stargazin S9D. As predicted by

this model, we found that PSD-95 with a mutated PDZ1 (PSD-

95::GFP H130V) selectively reduced binding to stargazin WT

but had no effect on binding to stargazin S9D (Figure 4B). On

the contrary, PSD-95 with a mutated PDZ3 (PSD-95::GFP

H372V) had a greater effect on stargazin S9D than on stargazin

WT (Figure 4D). In addition, we found that PSD-95 carrying a

mutation in PDZ2 (PSD-95::GFP H225V) has a similar impact

on both stargazin WT and S9D (Figure 4C). Together, these ob-

servations are consistent with the hypothesis that an extended

C-tail facilitates access to the farthest located PDZ domain,

PDZ3, in a perpendicularly oriented PSD-95 toward the plasma

membrane.

In order to confirm that stargazin-S9D-facilitated binding to

PSD-95 is mediated by the PDZ3 domain, we designed a
competition assay by triple transfecting the FRET pair PSD-

95::GFP and stargazin::mCherry WT along with stargazin S9D

not tagged with a fluorescent protein. Although we observed

a strong FRET signal between PSD-95::GFP and stargazin::

mCherryWT, we found that co-expressing non-tagged stargazin

S9D outcompeted stargazin::mCherryWT, as shown by a reduc-

tion in FRET (Figure S4A). As a control, we found that non-fluo-

rescent stargazin WT did not outcompete stargazin::mCherry

WT. Using this competition assay, we examined whether starga-

zin S9Dmight preferentially bind to the PDZ3 domain of PSD-95.

Even though stargazin S9D strongly disrupted the interac-

tion between PSD-95::GFP and stargazin::mCherry WT, it was

unable to disrupt the interaction between stargazin::mCherry

and PSD-95::GFP carrying a PDZ3 mutation (Figures S4B and

S4C). On the other hand, stargazin S9D still disrupted the inter-

action between stargazin::mCherry and PSD-95::GFP carrying

a PDZ1 mutation.

To independently confirm the role of the PDZ3 domain inmedi-

ating the effects of stargazin S9D, we used a co-immunoprecip-

itation assay. Even though untagged stargazin S9D strongly

facilitated binding to PSD-95, it no longer facilitated binding to

PSD-95 carrying a PDZ3 mutation. On the other hand, stargazin

S9D still facilitated binding to PSD-95 carrying a PDZ1 mutation

(Figures S5A and S5B).

Taken together with our previous FRET findings, these sets

of experiments strongly indicate that stargazin carrying ‘‘elon-

gated’’ C-tails, such as S9D, preferentially bind to the ‘‘deeper’’

PDZ3 domains on PSD-95.

Given that stargazin with an extended C-tail (S9D or linker)

enhanced the overall binding to PSD-95, we were intrigued

that just shifting the binding from PDZ1 to PDZ3 would, in fact,

increase net binding to PSD-95. A possible explanation for this

observationwould be that the PDZ-domain-bindingmotif of star-

gazin has a higher affinity for PDZ3 than for PDZ1. To test this

hypothesis, we measured the binding affinity between a peptide

containing the PDZ-domain-binding motif of stargazin and

the individualized recombinant PDZ domains of PSD-95 using

fluorescence polarization-based titrations. Indeed, the PDZ-

domain-binding motif of stargazin has more than 3-fold higher

affinity for PDZ3 than for PDZ1 (rPDZ1, KD [dissociation con-

stant] = 43.2 ± 3.0 mM; versus rPDZ3, KD = 13.7 ± 0.6 mM) (Fig-

ure 5). In addition, the PDZ-binding motif of stargazin has the

highest affinity for PDZ2 (rPDZ2, KD = 3.4 ± 0.5 mM). Altogether,

these measurements suggest that the extension of stargazin

C-tail enhances the overall binding to PSD-95 by shifting to the

farthest and highest affinity PDZ2/PDZ3 domains.

In the last set of experiments, we set out to define the func-

tional impact of stargazin carrying an elongated C-tail. We and

others have previously shown that the interaction between star-

gazin and PSD-95 is central for the synaptic immobilization and

recruitment of AMPARs (Bats et al., 2007; Opazo et al., 2012;

Schnell et al., 2002). In order to examine whether stargazin car-

rying an elongated C-tail was sufficient to immobilize AMPARs,

we expressed PSD-95::GFP together with stargazin WT or car-

rying a 24G linker. Wemonitored the surfacemobility of AMPARs

using a single-particle tracking approach. Endogenous-surface-

expressed GluA2-containing AMPARs were sparsely labeled in

live neurons with anti-GluA2 antibody-coupled QDots, and their
Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc. 7
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Figure 4. The Effective Extension of the Stargazin C-tail Preferen-

tially Engages Binding to the Farthest Located PDZ3 Domain of

PSD-95

(A) Schemes of our working model that Stg with elongated CTD has greater

access to deeper PDZ domains of PSD-95.

(B) Hippocampal cultured neurons (12–14 DIV) transfected with the FRET pair

Stg::mCherry WT or S9D and PSD-95::GFP253 mPDZ1 with the GFP inserted

between PDZ domains 2 and 3 (left). Impairment of the binding to PSD-95 first

PDZ domain by expressing PSD-95 mPDZ1 (H130V single point mutation on

the full-length PSD-95) reduces Stg::mCherry WT binding to PSD-95 but not

Stg::mCherry S9D (middle) (Stg WT + PSD-95 WT = 2.051 ns, n = 230 spines,

23 cells; Stg WT + PSD-95 mPDZ1 = 2.083 ns, n = 283 spines, 29 cells; Stg

S9D + PSD-95 WT = 1.987 ns, n = 288 spines, 30 cells; Stg S9D + PSD-95

mPDZ1 = 1.983 ns, n = 259 spines, 27 cells). The relative lifetime change

shows that PDZ1 contributes only to the binding of Stg WT (right) (Stg WT =

0.026 a.u.; Stg S9D = �0.004 a.u.).

(C) Neurons transfected with the FRET pair Stg::mCherry WT or S9D and PSD-

95::GFP253 mPDZ2 (left). Impairment of the binding to PSD-95 second PDZ
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movements were monitored by video microscopy (Bats et al.,

2007) (Figure 6A). Movement of single AMPARs was slower in

cells expressing stargazin 24G than in those expressing starga-

zin WT, as evidenced by the smaller surface explored by the re-

ceptor trajectories (Figures 6B and 6F). This effect was found in

both the synaptic and extra-synaptic compartments, although it

was more drastic in the latter (Figure S6). Accordingly, the distri-

bution of AMPAR diffusion coefficients was displaced toward a

higher fraction of immobile receptors in the presence of stargazin

24G than with WT (Figures 6C–6E). Altogether, these experi-

ments indicate that stargazin 24G is sufficient to increase

AMPAR diffusional trapping and immobile fraction.

In order to investigate whether the increase in AMPAR immo-

bilization is translated into an accumulation of AMPARs at syn-

apses, we used a super-resolution direct stochastic optical

reconstruction microscopy (dSTORM) approach to count the

number of putative AMPARs (Figure 7). As previously described

(Nair et al., 2013), we used the median fluorescence intensity of

isolated single emitting species in the shaft as a reference

for the signal provided by an individually labeled AMPAR.

Then, we estimated AMPAR content at synaptic nanodomains

in dSTORM images under the same conditions used in the study

of AMPAR mobility. As expected from an increase in the diffu-

sional trapping of AMPARs, we found that stargazin 24G

promoted a robust increase in the number of endogenous

AMPARs per nanodomain as compared to stargazin WT (Fig-

ures 7A, 7B, and 7E). In addition, we found that stargazin 24G

led to an increase in the size and number of AMPAR nanodo-

mains (Figures 7C and 7D), although it had no impact on

PSD-95 clusters (Figure S7).

Finally, to investigate whether the decrease in AMPAR lateral

mobility induced by stargazin 24G has a functional impact at

synapses, we measured miniature excitatory postsynaptic cur-

rents (mEPSCs) in neurons overexpressing stargazin 24G and

PSD-95, as shown in Figures 6 and 7. Remarkably, we found

that stargazin 24G produced a robust enhancement in both

the amplitude and frequency of mEPSCs (Figures 8A–8C).

This effect was due to binding to PSD-95, as mutation of the
domain by expressing PSD-95 mPDZ2 (H225V single point mutation on the

full-length PSD-95) impacts both FRET with Stg::mCherry WT and S9D

(middle) (Stg WT + PSD-95 WT = 2.054 ns, n = 230 spines, 23 cells; Stg WT +

PSD-95 mPDZ2 = 2.172 ns, n = 286 spines, 30 cells; Stg S9D + PSD-95

WT = 1.987 ns, n = 268 spines, 28 cells; Stg S9D + PSD-95 mPDZ2 = 2.088 ns,

n = 133 spines, 14 cells). The relative lifetime change shows that PDZ2 con-

tributes equally to the binding of Stg WT and Stg S9D (right) (Stg WT = 0.115

a.u.; Stg S9D = 0.100 a.u.).

(D) Neurons transfected with the FRET pair Stg::mCherry WT or S9D and PSD-

95::GFP400mPDZ3with theGFP inserted after PDZ domain 3 (left). Impairment

of the binding to PSD-95 third PDZ domain by expressing PSD-95 mPDZ3

(H372V single point mutation on the full-length PSD-95) impacts both FRET

with Stg::mCherry WT and S9D (middle) (Stg WT + PSD-95 WT = 2.113 ns,

n = 168 spines, 18 cells; Stg WT + PSD-95 mPDZ3 = 2.223 ns, n = 201 spines,

21 cells; Stg S9D + PSD-95WT = 2.049 ns, n = 268 spines, 28 cells; Stg S9D +

PSD-95 mPDZ3 = 2.204 ns, n = 127 spines, 14 cells). The relative lifetime

change shows that PDZ3 contributes more to the binding of Stg S9D (right)

(Stg WT = 0.093 a.u.; Stg S9D = 0.135 a.u.). Each graph corresponds to paired

experiments.

Data are represented as mean ± SEM and compared using Student’s t tests.

**p < 0.01; ***p < 0.0005; ns, not significant.
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Figure 5. Stargazin PDZ-Binding Motif Has a Greater Affinity for

PDZ2 and PDZ3 Domains of PSD-95

(A) Schemes of the various recombinant PDZ domain constructs (rPDZ) used

for the dissociation constant measurements (top). rPDZ1-2 corresponds to the

tandem of the first two PDZ domains of PSD-95; rPDZ1 and rPDZ2 are derived

from the previous constructs and contain each a single point mutation that

impairs binding to PDZ domain 2 (H225V for rPDZ1) and PDZ domain 1 (H130V

for rPDZ2); rPDZ3 corresponds to the third PDZ domain. Schemes of the

fluorescent polarization assays are also shown (bottom).

(B) Fluorescence polarization (FP)-based titrations of the various PDZ domains

of PSD-95 versus the last 15 amino acids of stargazin labeled with fluorescein.

Each titration is plotted as the normalized average of at least three experiments

with their SEM error bars and the corresponding fitted curve. The inset cor-

responds to the same datasets with a logarithmic representation of the protein

concentration. mP, millipolarization value.

(C) Summary table of the dissociation constants obtained in (B).
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PDZ-domain-binding motif completely reversed the potentiating

effect of stargazin 24G. We verified that expression of PSD-

95::GFP and Stg::mCherry WT did not modify mEPSC amplitude

and frequency as previously published (Nair et al., 2013) (Fig-

ure S8A). Because stargazin can also modulate the gating and

conductance of AMPARs, we verified that the potentiating

effects of the 24G linker were not due to modifications of the

AMPAR intrinsic properties. First, we found no differences in

the time course of mEPSC traces in neurons expressing starga-

zin 24G or stargazin WT, suggesting that potentiation was not

due to modulation of the deactivation/desensitization kinetics

(Figure 8D). Second, we found no differences in the weighted

mean single-channel conductance of synaptic AMPARs in

neurons expressing stargazin 24G or WT, as estimated using

a peak scaled non-stationary fluctuation analysis (Figures 8E

and 8F). Taken together, these observations suggest that

stargazin 24G potentiates synaptic currents exclusively by

enhancing the diffusional trapping—and, hence, accumula-

tion—of AMPARs at synapses. It is also conceivable that the

accumulation of AMPARs by stargazin 24G and S9D could occur

at silent synapses and result in the observed increase in mEPSC

frequency. However, using dedicated analysis procedures, we

found that a model of multiplicative scaling (which can reveal

subthreshold mEPSCs) is sufficient to explain our findings for

the extended C-tail constructs (Figure S8B) (Kim et al., 2012).

This is corroborated by our dSTORM data, showing that the

number of PSD-95 clusters (i.e., putative synapses) without

GluA2 nanodomains is the same for neurons expressing starga-

zin WT or 24G (Figure S7C).

In summary, the present study demonstrates that enhancing

the apparent length of the stargazin C-tail is sufficient to

facilitate the interaction with a perpendicularly oriented PSD-95

by engaging the PDZ3 domain, thus promoting the recruit-

ment of additional AMPARs to, ultimately, potentiate synaptic

transmission.

DISCUSSION

PSD-95 is themost prominent scaffolding protein at the PSD and

a potent regulator of synaptic transmission (Ehrlich andMalinow,

2004; Kim and Sheng, 2004; Stein et al., 2003). Thus, it is crucial

to understand how PSD-95 overall conformation relates to syn-

aptic function. Recent studies suggesting that PSD-95 is

anchored in the plasma membrane and oriented perpendicularly

to it at the PSD have raised questions as to how this particular

spatial conformation might impact binding to its different part-

ners and,more important, what the consequences are for synap-

tic function (Chen et al., 2008). We found that PSD-95 orientation

might impose important constraints to the binding of transmem-

brane proteins. This is particularly important for proteins such as

stargazin, which has a C-tail partially bound to the plasma mem-

brane via electrostatic interactions (Sumioka et al., 2010). Star-

gazin with a longer effective C-tail can better access and bind

the farthest located and highest affinity PDZ2/3 domains; as a

consequence, it facilitates both AMPAR anchoring and synaptic

transmission.

We reasoned that, if the effective length of the stargazin C-tail

is critical for binding PSD-95, it is most likely subject to
Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc. 9
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Figure 6. The Artificial Extension of the Stargazin C-tail Is Sufficient for the Surface Immobilization of AMPARs

(A) Scheme representing the labeling strategy and targeted site on endogenous GluA2-containing receptors. Endogenous GluA2 subunits were tracked using

primary antibody against GluA2 N-terminal domain and QDot-coupled secondary antibody.

(B) Overlay trajectories (blue for WT, n = 16 cells; and green for 24G, n = 18 cells) of GluA2 QD tracking for 30 s and the synaptic marker PSD-95::GFP (left) and a

few representative trajectories of GluA2 QD tracking membrane diffusion in neurons expressing Stg::mCherry WT or 24G and PSD-95::GFP400. The surface

explored by GluA2 is decreased when expressing Stg::mCherry 24G. Scale bar, 1 mm.

(C) Frequency distributions of the diffusion coefficients calculated from the trajectories of GluA2-containing receptors. Neurons expressing Stg::mCherry 24G

have an increased immobile population (diffusion coefficient, D, < 1 3 10�2 mm2/s).

(D) Cumulative distribution of the diffusion coefficient of GluA2-containing receptors shown in (C). Cum. Freq., cumulative frequency.

(E) Themean immobile fraction ± SEM is increased in neurons expressing Stg::mCherry 24G (WT = 32.3; 24G = 48.2). Data were compared using Student’s t test.

(F) Mean square displacement (MSD) of GluA2-containing receptors versus time plot for neurons expressing Stg::mCherry WT and 24G. The area explored by

GluA2-containing receptors is reduced in neurons expressing Stg::mCherry 24G. The two conditions were compared by calculating the area under the curve for

each cell in both conditions. Areas under the curves were compared using Student’s t tests.

Data are represented as mean ± SEM. **p < 0.01.
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Figure 7. The Artificial Extension of the Stargazin C-tail Increases AMPAR Nanodomain Number and Size

(A) Images of cultured hippocampal neurons (12 DIV) expressing PSD-95::GFP400 (left) and Stg::mCherry WT or 24G and live labeled for surface endogenous

GluA2 reconstructed from dSTORM imaging (right), revealing AMPAR nanodomain organization. Scale bar, 2 mm.

(B) Zooms on portion of dendrites (top) and on PSD-95 clusters (bottom).

(C) Nanodomain area calculated after extraction of major-axis andminor-axis length for each nanodomain, considering a nanodomain as an elliptic domain (WT =

3,853 nm2, n = 122 nanodomains, 12 cells; 24G = 5,432 nm2, n = 151 nanodomains, 12 cells). Bar graph shows medians (±20%–75% inter-quartile range [IQR]).

(D) Frequency distributions of the number of GluA2 nanodomains per PSD-95 cluster.

(E) Cumulative distributions of the estimated number of GluA2-containing receptor per nanodomains (WT = 14 receptors, n = 157 nanodomains, 12 cells; 24G = 21

receptors, n = 169 nanodomains, 12 cells). Inset shows mean ± SEM.

Data were compared using Mann-Whitney tests. ***p < 0.0005. In (E), p < 0.0001 is the comparison for cumulative distribution curves.

See also Figure S6.
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modulation. We found that changes in charge of the serine-rich

region of the stargazin C-tail, such as those induced by phos-

phorylation, strongly modulate its effective length and extension

into the cytoplasm, away from the plasma membrane. Previous

studies have shown that the stargazin C-tail is attached to the
membrane via electrostatic interactions between positively

charged arginine residues and the negatively charged phospho-

lipids (Sumioka et al., 2010). Phosphorylation of neighboring

serine residues are thought to neutralize the positively charged

arginines and detach the stargazin C-tail from the plasma
Neuron 86, 1–15, April 22, 2015 ª2015 Elsevier Inc. 11
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membrane. Here, we found that stargazin phosphorylation not

only detaches the C-tail from the membrane but also effectively

extends the C-tail into the cytoplasm to facilitate access and

binding to PSD-95. It is important to stress that membrane

detachment should not necessarily lead to an extension of the

C-tail into the cytoplasm, especially in the crowdedPSD environ-

ment. In fact, we showed that the stargazin C-tail effectively

extended into the cytoplasm in a charge-dependent manner

and that this extension enables the distal half of the stargazin

C-tail carrying the PDZ-domain-binding motif to sample more

efficiently the cytoplasm to reach its binding partners. In line

with these results, we found that a small truncation in the distal

half of the stargazin C-tail is sufficient to reverse the effects of

phosphorylation, suggesting that stargazin phosphorylation

facilitates binding to PSD-95 simply by elongating the C-tail.

Although we cannot rule out that stargazin phosphorylation

might recruit additional proteins thatmight help stabilize the star-

gazin-PSD-95 complex, we find it difficult to be the main force

that modulates binding. First, we found that the charge of the

C-tail is the main factor regulating binding to PSD-95 regardless

of the residue being modified. We found that disrupting the pos-

itive charge of the C-tail by mutating the arginine residues was

sufficient to facilitate binding to PSD-95, a contradictory finding

if phosphorylated serine residues were needed to recruit addi-

tional stabilizers. Second, we found that the facilitated binding

of stargazin S9D can be reversed simply by truncating, and

thus shortening, a small region of the C-tail. Potential stabilizers

should still be recruited to the phospho-mimetic residues.

Mechanistically, we found that stargazin with an effectively

elongated C-tail facilitates overall binding to PSD-95 by

engaging the farthest located and highest affinity PDZ2/3 do-

mains. By reaching the deepest PDZ domains, stargazin with

an elongated C-tail might also encounter less competition from

other transmembrane proteins known to bind PSD-95 for the

limited number of PSD-95 slots at synapses.

What is the physiological consequence of modulating the

apparent length of the stargazin C-tail by phosphorylation?

Since stargazin can be phosphorylated by CaMKII and PKC

(Tomita et al., 2005b), it is likely that the effective length of the

stargazin C-tail might be at the core of LTP of synaptic trans-

mission (Malinow et al., 2000; Opazo and Choquet, 2011). In
Figure 8. The Artificial Extension of the Stargazin C-tail Is Sufficient fo

(A) Recordings of mEPSCs in cultured hippocampal neurons coexpressing Stg:

mEPSCs in cells expressing stg WT and 24G either with or without PDZ ligand. H

mean mEPSCs. Horizontal scale bar, 10 ms.

(B) The stg 24G potentiates mEPSC amplitude by �2-fold through a mechanis

amplitude threshold for the detection of mEPSCs.

(C) Frequency of mEPSCs as in (B). Welch’s ANOVA obtained for the log-transfo

(D) Left: peak-scaled mean mEPSCs. Time base is 5 ms. Right: Welch’s two-tail

(E) Estimation of weighted mean single-channel current of synaptic AMPARs by

Aligned mEPSCs (gray) for cells expressing the stg WT (left) and 24G (right) are ali

bars, 1ms; vertical scale bars, 10 pA.Middle: inverted gray color maps for the squ

mEPSC. The ensemble variance is illustrated above each color map. Scale bars,

binned data points.

(F) Weighted mean conductance of individual AMPARs, Welch’s two-tailed t tes

Unless specified otherwise, all graphs represent mean ± SEM, with the number o

confidence intervals.

See also Figure S8.
fact, it has been previously demonstrated that stargazin phos-

phorylation is critical for LTP (Tomita et al., 2005b). Mechanisti-

cally, we have previously shown that stargazin phosphorylation

triggers the diffusional trapping—and, therefore, accumula-

tion—of membrane-diffusing AMPARs (Opazo et al., 2010).

Our present study strongly suggests that CaMKII/PKC could

support LTP simply by effectively elongating the stargazin

C-tail and thus promoting recruitment of additional synaptic

AMPARs. This hypothesis is supported by the present finding

that stargazin C-tail interaction with the membrane is reduced

upon cLTP in a CaMKII-dependent manner and that artificially

elongating the stargazin C-tail by means of a linker is sufficient

to both recruit additional synaptic AMPARs and facilitate synap-

tic transmission.

Taken together, our studies reveal an additional level of

complexity in the regulation of binding between stargazin and

PSD-95, the most prominent scaffold protein at the PSD. We

show that binding between stargazin and PSD-95 is controlled

not only by the presence but also by the particular orientation

of these interactors at the PSD. Although we demonstrated

that this is true for stargazin, it is likely that the same rules apply

to other transmembrane proteins known to bind PSD-95, such

as NMDARs, Neuroligin1, potassium channels such as Kv1

and Kir, and a number of neuromodulator receptors. It will be

interesting to examine how the effective length of the intracellular

domains of these transmembrane proteins might impact the

competition for the limited number of PSD-95 slots. On the other

hand, although we have examined the conformational changes

of the stargazin C-tail controlling binding to PSD-95, it is possible

that this interaction is also regulated by post-translational mod-

ifications impacting the orientation of PSD-95 toward the plasma

membrane. In fact, we found that preventing the N-terminal

palmitoylation of PSD-95, presumably disrupting its perpendic-

ular orientation to the membrane, was sufficient to abolish the

enhanced ability of stargazin carrying an elongated C-tail, such

as S9D or 24G, to bind PSD-95.

In conclusion, we have shown that the effective, rather

than actual, length of the stargazin C-tail is crucial for binding

a perpendicular-oriented PSD-95 scaffold and that, as such,

it potently governs both AMPAR anchoring and synaptic

transmission.
r Potentiation of Synaptic Transmission

:mCherry mutants with PSD-95::GFP. Left: example 20-s recording traces of

orizontal scale bar, 2 s; vertical scale bar, 10 pA. Right: time-expanded view of

m requiring its PDZ ligand, Welch’s ANOVA. The dashed line represents the

rmed data.

ed t test.

peak-scaled non-stationary fluctuation analysis (NSFA) of mEPSCs. Top row:

gned with their mean mEPSCs in blue and green, respectively. Horizontal scale

ared differences between the decay of eachmEPSC and the peak-scaledmean

2 pA2. Bottom: plots of the mean current against the ensemble variance for the

t.

f cells at the base. Next to each bar, the median is plotted with 83% bootstrap
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EXPERIMENTAL PROCEDURES

Molecular Biology, Biochemistry, Cell Culture, and Transfection

Cloning of plasmids and cultures of rat hippocampal neurons was performed

as in Opazo et al. (2010) (see Supplemental Experimental Procedures for

details).

FRET Measurements

FRET measurements were performed either in the time domain, as in Sainlos

et al. (2011), or in the frequency domain (see Supplemental Experimental Pro-

cedures for details).

dSTORM, Single-Particle Tracking, and Analysis

dSTORM was performed as in Nair et al. (2013). Single-particle tracking was

performed as in Opazo et al. (2010) (see Supplemental Experimental Proce-

dures for details).

Electrophysiological Recordings

Electrophysiological recordings were performed as in Constals et al. (2015)

(see Supplemental Experimental Procedures for details).

Statistics

Statistical values are given as mean ± SEM unless stated otherwise (see

Supplemental Experimental Procedures for details).

Ethical Approval

All experiments were approved by the Regional Ethical Committee on Animal

Experiments of Bordeaux.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and eight figures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2015.03.013.
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